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We use logarithmic Sobolev inequalities to study the ergodic properties of 
stochastic Ising models both in terms of large deviations and in terms of con- 
vergence in distribution. 
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1. I N T R O D U C T I O N  

The theme of this article is the interplay between logarithmic Sobolev 
inequalities and ergodic properties of stochastic Ising models. 

To be more precise, let g be a Gibbs state for some potential and sup- 
pose {Pt: t > 0} is the semigroup of an associated stochastic Ising model. 
Then {P,: t > 0} determines o n  L2(g) a Dirichlet form C g. A logarithmic 
Sobolev inequality is a relation of the form 

f 2  
(L.S.) f f 2  log [iflt22{g-------~)dg~c~gg(f,f), f~L2(g) 

for some positive ~ (known as the logarithmic Sobolev constant). In this 
article we discuss some of the implications that (L.S.) has for the ergodic 
theory of the stochastic Ising model. 

In Section2 we discuss ergodic properties from the standpoint of 
large-deviation thoery. In particular, we introduced and compare rate 
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functions with which one might hope to measure the large deviations of the 
normalized occupation time functional. The discussion here is quite general 
and does not rely on our having (L.S.). Even so, we are able to draw the 
following qualitative conclusion: given any closed set F of nonstationary 
states, the probability that the normalized occupation time functional up to 
time T lies in F goes to zero exponentially fast as T--* oo. Obviously, this 
result is more interesting in cases when one knows that the only stationary 
measures are Gibbs states. Utilizing the ideas developed here, we reprove 
here the result that in dimensions one and two this is the case. 

Section 3 begins our use of (L.S.). In the first place, we show that a 
complete large-deviation princple follows from (L.S.). Second, (L.S.) 
provides us with a way to estimate the size of large deviations. Finally, we 
provide a condition under which one can prove not only that (L.S.) holds, 
but also that there is precisely one stationary measure. 

In Section 4 we begin by showing that (L.S.) plus uniqueness of g 
implies that shift-invariant initial states converge to g at an exponential 
rate at least 2/e. Noting that (L.S.) implies that 

P,f-ffdg L 2 ( g ) ~ < e x p ( - 2 t / e ) f - f f d g  L2(g) 

we see that this rate is the same as the one we would predict from spectral 
considerations. 

Because we only know a few very special situations in which (L.S.) 
holds, we study in Section 5 what can be daid if our Gibbs state is very 
mixing and a logarithmic Sobolev inequality holds for each finite-dimen- 
sional conditional with a logarithmic Sobolev constant that tends to oo at 
a certain rate as the size of the system grows. We find that the type of con- 
vergence proved in Section 4 (under (L.S.) still occurs, only now at a sub- 
exponential rate (depending on the behavior of the logarithmic Sobolev 
constants for the finite-dimensional conditionals). Section 6 is devoted to 
the application of Section 5 in the case of one-dimensional Ising models. In 
this case we find that the above convergence rate is exp( -Tt / log  t) for 
some 7 > 0. 

It should be noted that although we have restricted ourselves here to 
Ising models with continuous spins, much of what we do applies to any 
situation in which the appropriate logarithmic Sobolev inequalities are 
available. Thus, the results of Sections 5 and 6 apply equally well to most 
Ising models with compact spin states. However, at the present time, the 
only interesting examples of models for which (L.S.) holds are continuous- 
spin-state models. 
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2. RATE F U N C T I O N S  A N D  LARGE DEVIAT IONS 
FOR INTERACTING S Y S T E M S  

Although many of our results are true in more general context, for the 
sake of definiteness we will restrict our attention to the setting described 
below. 

(_Mr) is a compact, oriented, C~ manifold of dimension 
N and 2 denotes the associated normalized Riemannian volume element 
on M. 

E = _Mz~ is given the product topology and M denotes the Borel field 
~ over _E. Given ~ r A _ Z ~, E A = _MA, t/e E ~ qA e -EA is the natural pro- 
jection of _E onto _EA, and N'A is the inverse image under q--* t/A of the 
Borel field MEA" Also, if # e  M~(_E) [the space of probability measures on 
(_E N) ]  and ~Z~ r A _ Z ~, then ~t, denotes the marginal distribution of # on 
_E A [i.e., ~eAOd#A=~O(rIA)l~(dtl)  for all ~b~)(_EA) ]. Given ~ A c ~ Z  ~ 
(i.e., A is a finite, nonempty subset of Z~), _C2(_E) denotes the inverse image 
under ~/~ r/A of C~(_EA). Finally, 

~ ( E ) = Q )  { C 2 ( _ E ) : ~ r  ~} 

A potential ~r is a family {JF: ~J 5 ~ F c  ~ Z v } of functions JF ~ C F ( E  ). 
We will always assume that J has f inite range R: J F  = 0 for F c  ~ Zv with 
the property that 

m a x { l k - l l  = max tke-l~l,  k, l ~ F }  > R 
l <~i~v 

and we will use An, n~>0, to denote { k ~ Z V :  Ik[ <~nR} and ~?An, n>~ 1, to 
stand for A n \ A , _  1. In addition, we will always assume that J is bounded in 
the sense that, for each m/> 0, all derivatives of JF up to order m are boun- 
ded independent of F c  c Z v. Finally, we will often assume that J is shift- 
invariant, JF+k ~- JF ~ sk ,  F c  ~ Z v and k e Z ~, where Sk: E ~ E is the shift 
map on E induced by the lattice shift on Z v. 

Given k ~ Z ~, set 

Ok-= ~ JF 
{F~ c Zn:F~ k } 

and define the linear operator L: ~ ( E )  --* ~ ( E )  by 

Lr = ~ e Hk d i v e ( e - "  k V~b) 
k ~ Z  ~ 

where div~ and Vk refer, respectively, to the divergence 
operators on the kth Riemann manifold (M, r). 

and gradient 
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For a given ~ ~ A ~_ Z v, define 

(~A, qAc) ~ EA x EA~ --* ~a(~A I tlA~) ~ _E 

so that (#a(~a ] qA~))A = ~A and (CbA(~AlttA~))A~=tta, In particular, if 
~3 ~ A ~ ~ Z ~, define gA : EA x EAr -+ R 1 by 

gA(~A [ r/A~)= exp I - -  
F:F ~ A ~ fZJ 

and set 

We say that 

JF o ff2) A(~ A I tlA~)] 

Z A(I1AC) = ;E A gA(  ~ A I ~A c) 2A(d~.~) 

g e M~(_E) is a Gibbs state for the potential d and write 
g e N(d)  if, for each G~ # A ~ ~ Z ~, 

tln, e EA, ~ ga(~A ] gn*) 2A(d(A)/ZAOta ~) 

is a regular conditional probability distribution on E A of g given ~A~ [i.e., 
for all ~b ~ NE: 

is the conditional expectation value of ~b given #A~]- 
f2 = C([0, oO); E) with the topology of uniform convergence on finite 

intervals and J/g is the Borel field # a  over f2. Given t >~ 0, t/(t): ~ --* E is the 
evaluation map at time t and J l t = a ( t l ( s ) : O ~ s ~ t ) .  We say that 
P ~ MI(Y2) solves the martingale problem for L at t 1 ~ E if 

( O(tl( t ) ) - ~b(tl ) - f~ Lfb(rl( s ) ) ds, dg,, P )  
\ 

is a mean zero martingale for all ~b e N(E). 

The following theorem summarizes a few of the basic facts about the 
situation described above. At least when M is the circle, proofs can be 
found in Ref. 9. For general (M, r), proofs have been given in the thesis of 
Clemens. ~2) 

Theorem 2.1. For each t/~ E there is precisely one P, that solves 
the martingale problem for L at tl. Moreover, the family {P, : t/e E} forms 
a Feller continuous, strong Markov family. Next, set P(t, ~, .)= P~ o tl(t) -~, 
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(t, ff)eE0, o e ) x E ,  and define {P,: t~>0} on ~)E by P~b(~)= 
ffO~(q) P(t, ~, dq). Then for each A c c Z ~ there is a continuous map 

(t, ~)e  (o, o0) • E ~  p . ( t ,  ~, .) e C ~ ( E . )  + 

such that 

P A(t, ~, dtlA) = pA(t, ~, tlA) 2A(drlA) 

In fact, pA(t, ~, t /A)>0 for all (t, ~, t/A) e (0, o o ) x E x E  A and 

F II EVkpA(t, ~, ')](~A)/I 2 sup max sup j 2A(dt/A) < O0 (2.1) 
. 2 ~ r  ~ k ( t , r  PA( t, ~, rlA) 

for each 6e (0 ,  1]. Also, if # e M 1 ( E ) ,  then/~ is {P,: t ~>0}-invariant (i.e., 
p = kiP t, t ~> 0) if and only if ~z L~b dp = 0 for all ~b e N(E). Finally, f~(or is 
a nonempty, compact, convex subset of MI(E); g e  N ( J )  if and only if, for 
each T > 0 ,  t e  [0, T] ~ r/(t) and t e  [0, T] ~ t l ( T - - t  ) have the same dis- 
tribution under P g = ~ e P , g( dtl ) if and only if ~ e fb L~, dg = ~ E ~' L(~ dg for all 
~b. OeN(E) .  In particular, for each g e f g ( J ) :  {P,: t>~0} has a unique 
extension as a strongly continuous semigroup {Pg: t ~> 0} of nonnegativity- 
preserving self-adjoint contractions on L2(g); 

1 
gg(~b, ~b) = lim 1 (~b - P,~b, ~b)c2(e ) = sup t ((o - Pt~, (J)c2(gl, 

t ---~ 0 I t > O  
(~eL2(g)  

is a Dirichlet form; and g is an extreme element of fg(J )  if and only if 
~b =Eg[~b] (a.s.g.) whenever q~eL2(g) and d~ ~b)=0. 

One of our aims in this article is to study the long-time asymptotics of 
the normalized occupation time functional 

L , =  t 6.(~.~ ds 

under the measures P~. To begin this program, we introduce Donsker and 
Varadhan's rate function I: M I ( E ) ~  [0, oo] given by 

{I  Lu } I( /~)=sup - - - d # , u e N ( E )  a n d u > 0  
/,/ 

Clearly, I is lower semicontinuous [M:(E)  is always given the topology of 
weak convergence] and convex. In fact, if 2: C(E) ~ R 1 is defined by 

2(V) = tlim log ~sup E' ,  V(q(s)) ds 
k r / ~ E  
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then (cf. Theorem 7.18 and Corollary 7.19 in Ref. 12 and be warned that J 
is used in place of I throughout that reference) 2 and I are duals of one 
another under the Legendre transform: 

I(#)=sup{f Vd#-)L(V): V~C(E)}, #~MI(E) (2.2) 

and 

~.(V) = sup {f  Vd#-I(#):#~M~(E)}, VcC(E) (2.3) 

From (1.3) and (1.4) it is quite easy (cf. Corollary 7.26 in Ref. 12) to see 
that 

I ( # ) = 0  if and only if # = # P ,  for all t>/0 (2.4) 

and that (cf. Theorem 8.1 in Ref. 12) 

li---m 1 log sup Pq(L ,  ~ F)  <~ - inf I(#) 
t ~ o v  l' ~ teE , u e F  

(2.5) 

l i~  1 log sup P,(L, ~ F) < 0 (2.5') 
t ~  I r / e E  

Although (2.5) and (2.5') are themselves of some interest as they 
stand, they have two serious drawbacks. First, (2.5) is incomplete in the 
sense that it lacks an accompanying lower bound. Second, I(#) does not 
lend itself to easy computation or, for that matter, even easy estimation. 
For  these reasons, we now introduce Donsker and Varadhan's other can- 
didate for a rate function. Namely, given a g E a r ( J ) ,  define Jg(#) for 
# ~ M~(E) so that Jg(#) = oo if # is not absolutely continuous with respect 
to g and 

Jg(kt)=~g(f'/2, f 1/2) if dlJ=f dg 

Using elementary properties of Dirichlet forms, one can check that 
f~Ll(g)+-~gg(fl/Z,f v2) is lower semicontinuous and convex (cf. 
Lemma 7.40 in Ref. 12); from which it is clear that #eMI(E)~Jg(#) is 
convex. On the other hand, it does not follow that # ~ MI(E)~ J~(#) is 
lower semicontinuous; and this circumstance is the source of the major 
obstruction to a general theory based on J~. Nevertheless, there are several 

for all FE ~MI(E)' In particular, if F is a closed subset of M~(E) and F con- 
tains no { P,: t/> 0 }-invariant measure, then 
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interesting properties of Jag that do not rely on lower semicontinuity. In 
particular, let L --7 denote the generator of {Tg~g: t~>0} in LZ(g) and define 
2~g(V) for V~C(E) by 

2g(V)= limoo+logEP~exp[foV(q(s))ds]} 

Then an equivalent expression for hag(V) is 

2g(v) = sup {f  Wl~ 2 dg-I-(~J, TgO)L:(g)" 4J e Dom(L--g)and [[r 1} 

From this second expression for 2 g it is easy to see that 2 g is the Legendre 
transform of Jg: 

~g(V)=sup {~ VaU- Jg(,a): #~M,(E)} (2.6) 

Unfortunately, unless Jg is lower semicontinuous, one cannot invert 
(2.6) to conclude that Jg is the Legendre transform of 2 g and hence that 
there is an upper bound like (2.5) with I replaced by Jg. In order to explain 
what we can say in this direction, define SP(g), p~ [1, oo], to be the set of 
# e M I ( E  ) such that there exist Tp~[O, (30) and frpELP(g) with the 
property that d(#Pr~ ) =frp dg. 

T h e o r e m  2.2. Let g e f q ( J )  be given. If g is extreme in ~ ( J )  and 
,u ~ Sl(g), then 

lim ~ I o g P u ( L , ~ F ) > ~ -  inf Jag(m), /~MI(E)  (2.7) 
t ~ oo m E i n f f '  

On the other hand, if Jg is lower semicontinuous and 
k t~ (-]p~ [1.oo)SP(g), then 

lim -1 l~  _ inf Jag(m), I'6~MI(E ) (2.8) 
t ~  t m e P  

In particular, if g e ext(~q(J)) and Ja g is lower semicontinuous, then for all 
~E Op~El,oo) SP(g) and ~ e  C(MI(E)): 

lim -1 tog Ee~{exp[tqS(Lt)] } 
t ~ o o  t 

= sup{~(m) - Jg(m): m 6 M,(E)} (2.9) 
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ProoL Suppose geex t ( fq(~) ) .  Then, for all ~sL2(g ) ,  gg(O, ~b)=0 if 
and only if ~b is m-almost surely constant. Hence, by the same argument as 
is used to prove Theorem 8.2 in Ref. 12, (2.7) can be shown to hold for all 
/~eMI(E)  with p ~  g. Thus, if I~eSl(g) ,  then there is a TE [0, oo) such 
that (2.7) holds when # is replaced b y / ~ t =  #Pr .  But if 0r:  f2 ~ f2 denotes 
the time shift map, then Pu~(L, e F ) = P v ( L ,  o O r s F )  and clearly 
IlL, - L, o 0r]l vat <~ 2Tit. Hence, if m e int F and B is an open neighborhood 
of m such that /~ is a positive variation norm distance from F c, then 

1 
lim - log Pu(L, e F) >~ ,lim_oo log P~(Lt: Ore B) 

l ~ o t 3  t 

= lim 1 log P,r(L,  ~ B) 
/ ~ o O  t 

>~ - inf Jg(fl) >>. - J g ( m )  
fle B 

Next, assume that Jg is lower semicontinuous. Then, by Lemma 8.18 
in Ref. 12 

1 
lim~ - log Pg(Lt e F) ~ - inf J~'(#) 

t ,ueF 

Hence, if d# = f d g ,  where f e  LP(g), then, by H61der's inequality, 

l i m  1 7 log P~(L, e F) <~ - inf 1 JJ(m) 
- m~rp 

where p' is the H61der conjugate of p. Now suppose that 
~eAp~EI,~)SP(g) .  Then, for each p e  [1, oo) there is a Tpe [0, oo) such 
that 

- -  1 
lim -1 log Purp(L, e F) <~ - __ inf J~(m) 

t ~  t p mEff'  

By the same reasoning as was used in the preceding paragraph, we can 
now conclude that for any ~ > 0 

l i r a  -1 t log P~(L, E F) <~ lim 
1 

,~ oo t Purp (L'  E F ~) 

1 
inf J~(m) (2.10) 

where 
F ~ := {#': I[#--~'[Ivar<e for some p ~ F }  
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Since (2.10) holds for all p e  [1, oo), 

lim -1 log P~,(L~ e F) <~ - inf Jg(m) 
t-+oo t me/~ 

for all e > 0, and clearly (2.8) results from this and the lower semicontinuity 
of 4 .  ! 

Comparing (2.8) and (2.5), one is inclined to ask whether I and Jg are 
not closely related. A partial answer is provided in the work of Donsker 
and Varadhan. Namely, one has (cf. Theorem 7.44 in Ref. 12) that 

I(lt)<~Jg(l~), # e M I ( E  ) (2.11) 

and that 

I(#) = J~g(#), # e MI(E) with/~P, ~ g for all t > 0 (2.12) 

Obviously, if (as can be the case when v >i 3) ~q(j)  has more than one 
element, then 10t ) = Jg~(p) must fail for some # ~ MI(E). Indeed, if ~ ( J )  
contains more than one element, then so does ext(aJ(J)).  Let g and g' be 
distinct elements of ex t (N(J) .  Then g_l_g', and so J g ( g ' ) =  oo, whereas 
I(g ')  = 0. 

The difference between I and Jg is, of course, a manifestation of the 
weak ergodicity of the processes under consideration. In particular, we do 
not even know, in general, that every {P,: t>~0}-invariant measure is a 
Gibbs state. As we will now show, one can make effective use of the 
function I to study such problems; namely, we use I to prove that, when 
v E { 1, 2 }, every {P, : t  ~> 0}-invariant measure is a Gibbs state. This result 
was obtained by us in Ref. 9 using the full force of Theorem (2.1; the 
present proof is much more elementary [in particular we do not use 
relation 2.1)]. In Section 3 we will use similar ideas to show that, when 
v = 1, there are nontrivial choices of J for which one can show that I =  Jg 
[when v = 1, ~q(J) contains only one element and so the choice of g is 
unambiguous]. 

In the following, H'(EA, ) denotes the Hilbert space obtained by com- 
pleting C~(EA=) with respect to [['llu'(eA.) given by 

2 2 

k e A n  

[_emma 2.3. I f I ( p ) <  ~ ,  then, for each n~>0, d#A .=f ,  d2 A=, where 
f~/2~ H'(EA.). In fact, there is a B ~ (0, ~ )  such that 

fe JlV~[(exp H~/2 ) f1=/2 3 ii 2 (exp H~ ) d2 A" <~ 2I(#) + B I O Anl 
k E An An 
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for n >~ 1, where 

H~ =- ~ Jr 
{ F ~ _ A n :  F ~ k }  

ProoL Set E~ = EA., #~ = #A~ and 2. = 2 A". 

Noting that 

/(#) Lu duo+  
n+L U 

for all ue C~176 that are strictly positive and taking ~ = log u, we see that 

I(~)~ - ~ fen IlV~ll2 dun- rE  L~ d#~+l 
k ~ A n  n + l  

for all ~ e C~(E,,). Next define L,," C~(E,,) ~ C~(E,,) by 

L.0= Z 
k ~ A n  

Then, by the preceding, 

(exp H~) div.[(exp H~) VkO] 

I (#)~>-2  ~ fE ][VkqJt12 dpn-fE L ~  dpn 
k ~ A n  ' 

fE - V~Hk) d#n+ 1 + ~ (gradk ~ [ V ~  "" 
k E A n  n + l  

>~ -2 ~ f~ llVkt~ll2 dl~,,- fE tn~ d#,, 
k ~ A n  ' 

1 
4 k L  fF~.+t HvkI?t~ll2 d#'+ l 

n where H7~ = H k -  Hk. Hence, if 

k ~ A n  n 



Logarithmic Sobolev Inequalities 1169 

for IIeMI(E.), then 

P(#.)  ~< 2I(p) + B laA.I (2.13) 

where 

1 
B=-2 .alsup sup HVk/~7,(qA~)ll 2 

k c A n  ~lAn~En 

TO complete the proof, let {Pf': t>~0} be the diffusion semigroup on 
C(E~) determined by Ln [i.e., PT~-~=~'oP'/L.~ds for t > 0  and 
4' e Coo(E.)] and set 

g~(d~A.)=exp [--F~A JF(rlA,,)] 2~(d~IA,,)/Z. 

where Zn = ~e,, exp( - - ~ - . F c  An JF(t]An)) "~n(d~A,,)" Then, since 

IE (bLn~dg~= - Y" fu (V,@lVk~)dg. 
n k ~ A n  n 

for all {b, ~ e C~176 {PT: t ~> 0} is the diffusion semigroup associated with 
the Dirichlet form S. given by 

<(~,  4')= X f IlVk~ll 2 dg,, 
k e A n  ' 

for ~ e H'(En). Moreover, since Ln is elliptic, P7 is given by a smooth ker- 
nel. Hence, for all/* ~ Ml(En) and t > 0, #P7 ~ gn; and so (cf. Theorem 7.44 
in Ref. 12) J"(/l)<oo if and only if dlt=fdgn, where fl/2eH'(E.), in 
which case J"(li)=g,,,(fm, fl/~). Applying this with #=Pn,  our result 
follows now from Lemma 2.3. | 

T h e o r e m  2.4. If I(/l)=0, then, for each n~>l, d [ , . l A n = f n d t ~  An, 

where f~/2 e H'(EA,,) and 

f~ i lVk(em/2f~/2) l l  2 e m d2A~ 
k ~ A n  I 

.< BIJ2 lj2 Vk eH J lJ2,,,2 eHk  An+l] lj2  2,4, 
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In particular, if v~ {1, 2}, then every {P,: t>~0}-invariant #eM, (E) i s  a 
Gibbs state for J ,  and for all v, every translation-invariant, {Pt: t>~0}- 
invariant # e M~(E) is a Gibbs state for J .  

ProoL We continue with the notation used in the proof of 
Lemma 2.3. 

Observe that (Ref. 9) once (2.14) has been proved, the identification of 
{P,: t>~ 0}-invariant measures as Gibbs states is quite easy. Thus, we will 
concentrate on the proof of (2.14). As a first step, note that (cf. Remark at 
the end of this section), as a consequence of Theorem 2.1, # = #P implies 
that d#n = f ,  d)o,, where f ,  is a strictly positive element of C~(E~) for each 
n >~ 1. Second, as in the proof of Lemma 2.3, I(#) = 0 implies that 

k~An n ~En+t 

for all tpeC~(En). Noting that for keA,, 

- re  ]]Vk~pll2dtt"-fE eH*div~(e "*Vk~p)d,u,,+~ 
n n + l  

= -rE, (fln/2 Vk~ i f  1~2 Vk~b _ 2e Hk/2 Vk(eUk/'2f~/2)) d2, 

and that for k e c?A n 

--rE IIVk~lll2 d]2n-- fEn+l eHk diVk(e-Hk Vk~l) d#n+ ~ 

fE 1/2 2 - Ilf. Vk~Oll d;~ 
n 

fE ~-7 I~Hk/2a"l/2 ~ d~n+ + 2  ,d.(fl/21Vk~/le+ Hk/2vk~e: Jn+ll t 
n + !  

>t - f ~  qlf~/2 vk~tl 2 d,L 

- 2 ( feo ilfl/2 Vk~bll2 d2~) ~/2 2 ( feo ilfl/2 Vk~bll2 d2~)~/2 
l i~2 
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we arrive at 

E 
kEOAn f~n 

"4- (kEOA n En 

E 
k~An-1 

I[f~/2 Vk0112 d2~ 

\ 1/2 
Itf~/2 Vk @ l[ 2 d)~,,) 

IIV~(em/2f~/2+~ )ll 2 e - m d2~ +l ] 
1/2 

fe. (f~/2 Vk~b ] _fin~2 Vk ~ + 2e-Hk/2 Vk(et4k/2f�88 d2, 

for all ~ e C~(E,). In particular, taking ~h = ~ - ~ ( ~ F ~ A  ~ JF ~- log f , )  and 
noting that 

( 1 )  4"1/2V 1It _~ fU2 V~H~ V,f~ 

=- e [exp( - HTJ2) ] V~ { [exp(HTj2)] f j2  } 

for k~An and that H"=Hk for keA,+j the preceding together with k 

(2.13) yields 

e 2 ~ f& live{ [exp(H~/2)] fl/2 }112 e x p ( -  H"k) d2, + 2aB 1/2 laAnl i/2 
k ~ A  n 

/ ) 1/2 
x ~ O~A. fen+, HVk { [exp(Hk/2)] f , l~ l  }112 e x p ( -  Hk) d2,+i  

/> (2c - a 2) 
kEAn 1 

fF. rIVk{ [exp(H~/2)] f~/2} [12 exp(-H~) d2~ 

(2.15) 

After dividing by e and letting g -~ 0, we obtain (2.14). | 

Remark,. As mentioned before, Theorem 2.4 was proved in Ref. 9 
using the estimates in Theorem 2.1, especially (2.1). In the proof given here, 
we have used the much simpler fact that PAo(1, q,') admits a smooth, 
positive density with respect to 2 A~ Actually, we could have avoided using 
even this relatively elementary fact. Indeed, the existence o f f , ,  n ~> 1, with 
f~/Z~H'(EA,) comes from Lemma 2.3. In addition, a mollification 
procedure (cf. Ref. 13) allows one to find, for a given n~> 1, a sequence 
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{//'}~=l~ml(E) such that /~'~kt, I(p~)~I(#), d(/2')A.+ 1 =f.+~' d;t A"+', 
where f~+~ is a strictly positive element of C*(EA.), and 

I I ( f l n + l ) l / 2 _ _ c l / 2  /I J n +  111H'(En+ 1) ~ 0 

Hence, we could have arrived at (2.14) via a limit procedure in which # is 
replaced by/f l  and 1 is allowed to become infinite. 

3. L O G A R I T H M I C  SOBOLEV INEQUALIT IES A N D  
GIBBS STATES 

In this section we give conditions that imply the existence of a 
logarithmic Sobolev inequality for some Gibbs states. We then show how a 
logarithmic Sobolev inequality allows us to prove that I - - J ~  when v = 1 
and to obtain an upper bound on - in f .~ r Jg ( /~ )  [and therefore on 
lim,_ oo(1/t)log Pg(L, E/')] for any v when 

for some ~b e C(E) and e > 0. 
The theorem that gives us a logarithmic Sobolev inequality is the 

following. 

T h e o r e m  3.1. Let Ric denote the Ricci curvature tensor for (M, r) 
and assume that Ric~>flr (in the sense of quadratic forms) on 
T(M)x T(M) for some f ie(0,  oo). In addition assume that there is a 
y: Z ~ --, [0, oo ) and an 0 < e < 1 such that Z~ ~ z, 7(k) ~< (1 - e) fi and 

[Hess(Jr)(g,  f,  V , f ) l  
F ~  {k,l} 

~< ~ 7 ( k - l ) I l V k f l l  IIV, f]l 
k,l ~ Z v 

(3.1) 

for all k, l ~Z  ~ and f e ~ .  Then ~ ( J )  contains precisely one element g. 
Moreover, if 

G A,,.~(d~a.) = gA.(~a,, I r/A~) AA"(d~A.)/ZA.(qa~) 

for n ~> 0 and t/E E, then 

fE,~(~An)2 log[ [~b(~A.)[/ll~b]l c2(GA.,,)] 

~< ~P ~ 4 k ~ ~  llVk~b(,A~ 2 Gn(d~A~ (3.2) 
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for all r e C~ In particular, 

f q~(Q2 log(lr162 ~ ) ) ~  ~ ~q&, @), ~b e L2(g) (3.3) 

Proof. When M = S  d and g~ext(f f (J)) ,  (3.2) and (3.3)are proved 
in Ref. 1. Since the general manifold case is exactly the same as when 
M = S a, we will restrict our attention here to the proof that ~ ( J )  contains 
only one element. 

To prove that there is only one element in i f (J) ,  we will produce a 
Markov semigroup {P,: t/> 0} with the properties that every g ~ (q(J) is 
{/~, : t ~> 0}-invariant and 

lim sup IPrr = 0 (3.4) 
T ~ o o  ~,r/e E 

for each ~be~(E). To this end, define L,: C~~ C~176 by 

L~r ~ 2 Ik' divk{[exp(-H~)] Veqt} 
k ~ A n  

where 

H~ = E & 
( F  ~ _ A n : F ~  k )  

and denote by {/37: t~>0} the associated Markov semigroup on C(En). 
Then C~176 is {/~': t/> 0}-invariant. Moreover, by the same reasoning as 
was used in Ref. 1, if 

and 

F7(r ~b)=~[L~r162 = ~ 2 Ikl IIVk~ll 2 
k ~ A n  

F~(r r  [L, FT(r r  2N7(r Lnr 

then 

Next, note that for each T> 0 and r ~ C~176 

d n n An  
- P, F2 (Pr_  tr % - PT- ,r  dt P t F I ( P T - t r  #~- ' ~ ) -  n n % t ~ ro, T3 

822/46/5-6-25 
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Thus, 

NFI(PT4) < P~O)II c(E.) <- e 

At the same time, by the mean-value theorem, there is a KE (0, oo), which 
is independent of n, such that 

sup IO(~) - ~(r/)l ~< K 11/~7(~, 0)11 l/2 C ( E n ) '  
r e E .  

Thus, we conclude that 

~ C ~ ( E , )  

sup I/~}~b(~) -/~7~b(r/)] -G< Ke -2~eT ][F'~(~b, q~)]I c(E,) 
~,rl E E n 

(3.5) 

for all n~>0, T>0 ,  and r176176 
Finally, let {/~t: t ~>0} be the Markov semigroup on C(E) associated 

with L: ~(E)  ~ ~(E)  given by 

Zq~= ~ 21~le/4k divk(e-HkVk~b) 
k ~ Z  ~' 

Then every g e ~ ( J )  is {/~,:t/> 0}-invariant (in fact, reversible). Also, for 
each T >  0 and ~b ~ C(E), [/~}~,bo~A,] ~ ~ /~V~ b uniformly on E. Hence, 
by (3.5), (3.4) holds for each ~b 6 ~(E).  | 

Note that Theorem 3.1 applies only to manifolds with a nonzero Ricci 
curvature. For example, it applies to S 2, where the Ricci curvature equals 
the usual metric. Thus, in this case, if the interaction is 

JF(X)=yfl(Xi'X,) if F={i,j} with [ i - j [ = l  
10 otherwise 

then for fi < 1/(4v) this process (the stochastic Heisenberg model) has a 
unique stationary measure, and that stationary measure, which is 
necessarily a Gibbs state, satisfies a logarithmic Sobolev inequality. 

Our next goal is to show that if g ~ ( j )  satisfies (L.S.), then Yg can 
sometimes be used in place of I to estimate lim,~ ~o(1/t)log P(L, ~ F). We 
begin by showing that, when v = 1, (L.S.) implies that I actually coincides 
with Y~ [recall that, when v = 1, there is only one g~ c~( j ) j .  We know of 
no nontrivial examples in which I =  Jg when v >/2; and we cannot rule out 
the possibility that I=J~ whenever [(~(J)[ = 1, or at least whenever 
]if(J)[ = 1 and the unique g ~ ad(J) satisfies (L.S.). 

We begin with the following lemma. 
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I . e m m a  3.2. Assume that g is the only element of ~ ( j )  and that g 
satisfies (3.2). Let /*(~)=/~a,, n>~l, where /*EMI(f2), and assume that 
d# ~") = f ,  d2", where 

sup y" f NVk(emJ2f~12)ll2 d,a~ < oo 
n k E A n  1 

Then # ~ g. 

Proof. Let gn('lr/) be the conditional density of g on A~+~ given 
r~ ~ EA~ .. Then denoting eft/4 by c~ and applying (3.2), we have 

f e -Hk HVk(eud2f~/2)ll2 d)L 
kEAn-I 

- -  z fg t lr/l vk(S"(Cr/t' 'J212 
> o: ff f,,({lt#) log(f,dr ) g,,(~ I r/) \~.(~]-~ f~A.(r/)g.(r (3.6) 

Let h,(~)=~fOA.(r/)g.((Ir l)dq.  Then by Jensen's inequality applied to 
x log x and the dr/integral, we bound the right side of (2.8) below by 

_ '~" lo L -  1(~) d~An_l c~fa, , f" ire) g h, (~)  

>--~ f f~(G~) log fm(~Am) (h,,)am(~Am) d~A,,, (3.7) 

for m ~< n -  1. Here we have applied Jensen's inequality again, this time to 
the variables ~z,\z~. Note that (hn)A," -+ gA~ as n --+ oo by the uniqueness of 
the Gibbs state. Thus,  

supf-~a 

Therefore {fm/ga~: n >~ 1 } is uniformly integrable with respect to g, and 
h e n c e # ~ g .  | 

Since laA,I does not depend on n if v = 1, from Lemma 2.3, (2.11), 
(2.12), L e m m a  3.2, and (2.5) we obtain the following theorem. 

T h e o r e m  3 .3 .  If v = 1 and (3.2) holds,  then there is precisely one  
g E c g ( j )  and I =  J~. In particular, in this case we have that 

lim 1 log[sup Pq(L,  ~ F)]  ~< - i n f J  g (3.8) 
l ~  t nr F 
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for all closed F___ M~(f2) and that 

1 
lim - log[P , (L ,  e F) ]  ~> - i n f J  g (3.9) 
~-'-~ t r 

for all open F___ MI(O) and all # e Sl(g). 
When v/> 2 and (L.S.) holds, we can still give an upper bound in terms 

of J~. 

T h e o r e m  3.4. Let g ~ {q(J) and assume that g satisfies (L.S.). Then 
Jg is lower semicontinuous and MI(f2) and Up~ll ,~]SP(g) c- 
Op ~ ~ , ~  SP(g) �9 In particular, 

lim -1 log[P~,(L, EF)] = - i n f  J~ (3.10) 
t ~ t  F 

for all #~ Up~ll,~l SP(g) . 

Proof. To prove that Jg is lower semicontinuous, suppose that 
# , , ~ #  in M1((2 ) and that s u p n J ~ ( # , ) < ~ .  Then, d # , = f n d g ,  where 
gg(f~/2, fln/2 ) = Jg(#n) is bounded. Hence, by (L.S.), ~ fn log(f , )  dg is boun- 
ded and so {f.} is uniformly g-integrable. But this means that d# = f d g  
and that f , - - , f i n  L~(g). In particular, 

Jg(#) = gg ( f l / 2 ,  fl/2) ~ lim gg(f~/2,~ , ~,r~/2~, = __lim Jg(#n) 
n ~ c o  n ~ o f ?  

To see that SP(g)~("]qs(l.ov)Sq(g) for all p~(1,oo) ,  it suffices to 
check that LP(g)___ Sq(g) for all 1 < p < q < oo. But, by Gross's theorem (cf. 
Theorem 9.10 in Ref. 12) 

IIP,Ilp~q= 1 for q -  1 p _  l <~ e 2/~' | 

Given g ~ fq(J) ,  set 

for ~b e C(E) and e > 0. We conclude this section by showing that when g 
satisfies (L.S.), then 

- inf Jg~< -e2/[c~B(~b)], e > 0  (3.11) 

where B(~b)e (0, oo) is a certain number, which depends on ~b alone. 
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The first step in the derivation of (3.11) is the simple observation that 
(L.S.) implies that 

- i n f  Jg ~< r - l inf{ f  fl~ } ~ (3.12) 

The second step is taken in the following iemma. 

l . emma 3.5. Let (s g ,  #) be a probability space and let r be a 
bounded, continuous, real-valued function on f~ such that 
~ O(x) #(dx) = 0. Define 

r = j e (20(~) g(dx) 

Then for all ~ > 0, 

inf { f  f(x)log f(x)#(dx): f>>.O, f f(x)#(dx)= 1, and 

~> sup [ a e -  log r  
(2 

Proof. By a theorem of Sanov (see Lemma 3.38 in Ref. 12), for each 
f~>0 such that ~f(x)#(dx)= 1, we have 

ff(x) logf(x)p(dx)=st~P{f~(x)f(x)p(dx)-log[fe~(X)p(dx)]} 
(3.13) 

where the supremum over ~ is over all bounded, measurable functions ~p. 
Letting ~ be of the form ~ ( x ) =  ar we see that 

f f(x) log f(x) #(dx) 

>~ sup{f ar e~r (3.14) 

Note that ~ r #(dx) = 0 implies that log[~ e ar #(dx)] ~> 0 for all a. 
Thus, if in addition ~f(x)r e, then we have 
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Let ~b be a bounded, continuous function with ~ ~(x)g(dx)=0. We 
denote log[~ e ao(x) g(dx)] by F(a). 

Coro l la ry  3.6. If (L.S.) holds and if F={I.t:~(x)g(dx)>~s}, 
s > 0, then 

- inf J~(/2) ~< - ( l / c  0 sup [as - F(a)]  
u ~ F  a 

(3.16) 

Proof. This follows immediately from (3.12) and Lemma 3.5. | 

We now let K(s )=  sup, [ a s -  F(a)] .  Since F (0 )=  0 and F ' ( 0 ) =  0 and 
F(a) >~ 0 for all a, we have K(0)=  0 and K(s)> 0 for all ~ > 0. Note that if 
G(x) >1 F(x) for all x >10, then 

K ( s )  = sup [sa - F(a) l  ~> sup [ca - G ( a ) ]  
a>~O a>~O 

(3,17) 

Since F ( 0 ) = F ' ( 0 ) = 0  and F(a)<~a I1~11~ for all a, there is a constant, 
B~ < 0% such that F(a) <~ B~a 2 for all a 1> 0. Thus, by (3.17), K(s) >~ s2/4B~ 
for all s > 0  and thus 

- inf Jg(/~)<~ -sz/4~B~ (3.18) 

The constant 4eBr in (3.18) is probably not optimal, but in the case 
where the JF=O for all F (i.e., there is no interaction) one sees that 
infu~r Jg(#) is asymptotically a constant times e2 as s goes to zero. Thus, 
(3.18) is qualitatively correct. 

We collect a few of the above observations together for easy reference 
in the next two sections. 

L e m m a  3.7. L e t  ~b b e  a bounded, continuous function such that 
(~(x) g(dx)= 0. Then for all f ~> 0 such that ~ f(x) g(dx)= 1, 

I (b(x)f(x)g(dx)<.2B I f  f(x)log f(x)g(dx)] ~/2 (3.19) 

for any B such that log[~ e ~x)  g(dx)] <~ B2a 2 for all a. 

Proof. Let e=~(~(x)f(x)g(dx). If ~-..<0, then (3.19) is immediate. 
Otherwise, from Lemma 3.5 we have 

f f(x) log f(x) g(dx) >>. K(s) >~ s2/4B 2 | 
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4. FREE E N E R G Y  

In this section the potential J and all probability measures on Z v that 
occur are assumed to be translation-invariant. 

The point of this section is to show that if (3.1) holds (and hence the 
unique Gibbs state admits a logarithmic Sobolev inequality), then, starting 
from translation-invariant initial states, the corresponding stochastic Ising 
model converges exponentially fast to equilibrium. 

Our main tool in this and the following section is the Helmholtz free 
energy. In order to take advantage of the translation invariance of the 
initial distribution, we work with the specific Helmholtz free energy (i.e., 
the energy per lattice site) in this section. In the next section we will be 
concerned with one large but finite cube at a time, and hence in that sec- 
tion we will not need to divide the free energy by the volume of the cube in 
order to keep the quantities with which we are dealing finite. 

The free energy in a cube A at time t is defined as follows. Let #o be 
any initial distribution and let #I A) denote the marginal distribution on m A 
of / loP  ,. If G(A)(d~) is the marginal of the [unique if (3.1) holds] Gibbs 
state, then by Theorem2.1, #1A)~.G (A) for all t > 0 .  We denote 
d#IA)/d(G (A)) b y f l  A). The free energy of #t on A is defined to be 

fM A f l  A)(~) Iog[f~ A)(~)] G(A)(d~) (4.1) 

and the specific free energy of #, is given by 

]A] l fMAflA)(~ ) 1og[flA)(~)] G(A)(d~) (4.2) 2imz,. 

If #o is translation-invariant, then #, is also translation-invariant and hence 
the limit in (4.2) exists (possibly + oo) by Theorem 7.2.7 in Ref. 11. 

We need the following two facts. 

I. There is a constant C < oo such that for all finite cubes A and all 
initial distributions/~o 

t"  

JM A f]A)(~)1og[f]A)(~)] 6(A)(d~)<~ C IAr (4.3) 

II. For all b > 0  and all t e [ 6 , 6  -1] there is a constant, C(6)<o% 
such that for all cubes A, f~A) and l o g f l  A) are in the domain of L and 

_d fflA)( ) clt 

f flA)(~-) L[log fA(~)] G(2~(d~) + ]~?AI C(6) (4.4) 
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where A = {k e ZV: dist(k, A)~< R} and 8A = A\A. Fact I follows from (2.1) 
just as Theorem 4.14 follows from Theorem 3.9 in Ref. 9. For  Fact II see 
(4.21) and Lemma 4.22 of Ref. 9. 

k e r n m a  4.1. If (L.S.) holds, then for any initial distribution #o and 
any cube A and all t > 0 

f ffA)(~) L[log f l~)(~)]  g(d~) 

4 
fflA)(~) log flA)(~) g(d~) (4.5) 

Proof. Let L g be the generator of the semigroup {Pg: t > 0 }  in 
Theorem 2.1. Then, for r ~ e Dom(L g) 

- f cLgtp dg = gg(r O) 

where 
1 

g~(r 0)=~ [u( r  + ~, r + 0 ) - u ( r  r  

and gg is described in Theorem 2.1. Next, set m~(d~ xdtl)= 
P(t, 4, dq)g(d~), where P(t, ~, .) is the transition probability function in 
Theorem 2.1. Then (cf. Lemma 7.38 in Ref. 12) 

d~162 O)-- lim 1 f , - o t  [ r 1 6 2  m,(d~, dq) 

Hence, applying (L.S.) to (flAI) 1/2, we will prove (4.5) once we show that 

(a - b)(log a - log b) >~ 4(a 1/2 - b l / 2 )  2 

for all a, b > 0. Equivalently, we must show that 

(x - 1 ) log x >~ 4(x 1/2 -- 1 )2 

for all x > 0. But x e (0, oo) ~ ( x -  1) log x - -  4 ( X  1/2 - -  1 )2  is a convex 
function whose minimum occurs at x = 1. | 

k e m m a  4.2. If (L.S.) holds, then..for all 6 > 0 and all t ~ [b, 6-~] ,  

_d f f}A~(~) 1og[/}A)(~)] G(A~(d~) 
dt 

4 ~ f f~A)(~) Iog[f~A)(~)] g(~)(d~) + C(6) 1831 (4.6) 
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Proof. This follows immediately from (4.4) and Lemma 4.1. I 

Note that by (4.3) and Lemma 4.2 for all t � 9  [1, 6 1], 

f ffA~(r 1og[flA)(r G(A)(dr 

<~ e (4/~)(t I)CIAI +�88 (4.7) 

k e m m a  4.3. If g e N ( f ) ,  and (L.S.) holds for g, then for all 
r �9 ~ ( E )  there is a constant A = A(r J ,  c~) and an e = e ( J ,  ~) such that 

f (r i r dg f ~boSj dg <<.Ae-~rk-J' 

Proof. (L.S.) implies that there is a gap of length at least 2/e between 
0 and the rest of the spectrum of L on LZ(g) (see Ref. 10). The rest follows 
just as in the proof of Theorem 2.18 in Ref. 8. I 

L o m m a  4.4. Assume that ~ satisfies (3.1). Let g be the unique 
element of N ( J )  and r �9 ~ ( E )  with ~ r dm = 0. Define 

   a,=lo E;exp(a 
where the summation is over all k such that r o Ske ~(A).  Then there is a 
constant A < oe and a 6 > 0 such that for all lal < ~ and all cubes A 

d 2 
da 2 FA(N) <<, A I11 (4.8) 

Proof. Let A be fixed and suppress it from the notation. Differen- 
tiating F twice, we have 

Now let J ( a ,  A) = J w {ar o SJ: j such that ~b o S J �9  ~(A)  }. That is, f l(a,  A) 
consists of the elements of J together with all translates of ar that are 
measurable inside A. If J satisfies (3.1), then there is a 6 > 0 such that for 
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all lal <~,  j ( a ,  A) also satisfies (3.1) with ~ replaced by e/2. Assume that 
lal is less than this 6 and let the unique element in J ( a ,  A) be denoted by 
g,. Then note that (4.9) is equivalent to 

F"(a)=f(~r162176 2 

: ~ I f  (r r k dg~)(f r J dg~)l (4.10, 

Thus, by Theorem 3.3, (L.S.) holds with an c~ that may be taken indepen- 
dently of a for lal < a. The lemma now follows from the mixing property of 
Lemma 4.3. | 

T h e o r e m  4.5. Let r satisfy (3.1) and denote 4/eft [see (3.2)] by c~. 
Let ( r 162  {g}. Then, for all r  with ~ r dg=O, there is a constant 
B e such that for all translation-invariant initial states g0 

f r p,(d~) ~< Bce-(2/~) t (4.1 1) 

Proof. Fix a finite cube A and note that by translation invariance 

f r  -1 2 f O~ 
k ~ A  

where Ao is such that Ce C~(E) a n d f  (A+Ao) is as in the first part of this 
0 a t  

section. Then, by (3.19) and (4.7), for any a > 0  and all t e  [1, 6-1],  we 
have 

f r e (4/~)(, ~1C ]Ao+AI +�88 (4.12) 

where B A satisfies FA+Ao(a/IAI)K~B2a 2 for all a>~0, and FA+Ao is as in 
Lemma 4.4. Note that since FA + A0(0) = 0 and F~ + ao(0) = 
~k~A O~ =0 and FA+Ao(a)<~a ]A] tlCql~ for all a, the existence of 
such a B A is guaranteed by Lemma 4.8. Moreover, again by Lemma 4.8, 
we see that there is a constant B~ < oo such that B2A <~ B~,/IAI for all cubes 
A. Substituting this into (4.12), we have 

f r I~,(d~) <~ 2B,{e (4/~)(,-~)C IA + AoI/IAI + �88 IO(A + Ao)]/]A] } 1/2 

(4.13) 

for all finite cubes A. Letting A -~ Z ~ and noting that tA + Aol/IAI --* 1 and 
that 16(1 + Ao)/IAI--, O, we have the desired result, | 
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Remark. Notice that 2/e is the estimate for the gap in the spectrum 
of L predicted by (L.S.). What we have shown is that, at least when #0 is 
shift-invariant, 2/~ is a lower bound on the exponential rate at which 

~b d/z, approaches ~ ~b dg when ~b e ~(E).  

5. M O R E  FREE E N E R G Y  

In this section we weaken the logarithmic Sobolev hypothesis and 
replace it with a strong mixing condition on the Gibbs state. We then 
derive a rate of convergence that is slower than exponential. How much 
slower depends on how much the logarithmic Sobolev hypothesis has been 
weakened. The method used here has the advantage that it works for any 
initial distributions, not only translation-invariant ones. 

For A c c Z ~, recall the functions ~b A : EA x EAC and gA : EAC -+ (0, oO ) 

introduced in Section 2 and define GA,,7 ~ MI(E) by 

f f(~) GA,.(d~) = f fo q~(~A I OA~) gA I t/A ~) 2A(d~A)/ZA(qA") 

for q e E  and f e  C(E). Also define 7(A) to be the smallest number 7 such 
that 

f2(~) GA,.(d~) f f2 (~) log  tlfIl~c(~,,) 

f e c2(E) (5.1) 

for all t /e E. 

Lemma 5.1. For e a c h A c  c Z  v ,y (A)<oo .  

Proof. Observe that (5.1) is equivalent to 

ff2(~)log f2(~) GA,.(d~)<yf 
Itfll 2=(G~,.) k~A HV~ f(~)]]2 GA,.(d~) 

Also, for any probability measure m and any f e L2(m) 

f f~(~) log f2(~) ]]fll 2~(m-------~) m( d~ ) 

= inf f [f2(~) log f2(~) _ f 2 ( ~ )  log x _ f 2 ( ~ )  + x]  m(d~) 
x > 0  
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and for each x > 0 the integrand on the right side of the above equation is 
nonnegative. Also, if the left side in the above equality is finite, then the 
infimum on the right side is achieved when x=~f2(~)m(d(). Hence, one 
easily checks that for any probability measures m and # with m << #, 

o~ f2(~) ~t(d~) f f 2 ( r  f'(r162 dm ff2(~)logHfUZL.(. , 
Itfll ~'(m) 

Thus, since gA is bounded above and below by positive constants, we need 
only check that 

I. f2(~)log f'(~---------~)2A(d~)~yIE. ~ liV~/(~.)li2.~'(d~) 
Ilfl lL(. .~ .~A 

for some 7 < oo. But, because logarithmic Sobolev inequalities are preser- 
ved under tensor products (cf. Ref. 4 or Lemma 9.13 in Ref. 12), the 
preceding will follow once we show that 

fMf2(~)log f2(~---~) )o(d~)<~/f M ]lVf(~)[]22(d~), f~C~(M) (5.1') HfH 22(2) 

That a logarithmic Sobolev inequality holds for the Brownian motion 
on a connected compact manifold was first observed by Rothaus. t~~ For 
the sake of completeness, we sketch a proof here. By standard elliptic 
theory, the heat flow semigroup e t~ admits a smooth density q(t, x, y) that, 
for each t > 0, is uniformly positive. In particular, e 4 is a Hilbert-Schmit 
operator on L2(M), and therefore 0 is the only possible accumulation point 
of its spectrum. In addition, 1 is its largest eigenvalue and, because 
q(1, x, y) is uniformly positive, it is clear that 1 is a simple eigenvalue. 
From these considerations, we see that 

# ~ f - f  f d2 L2()') ~ f - f  f d2 L2(~.)e-% t~>0 

for some e > 0  and all f~L2(2) .  At the same time, because q(1, x, y) is 
bounded, it is clear that Ile~fl[ L4(x)~< C I[f[I cz(~.) for some C < oo. Hence, by 
a simple argument, due to Glemm, r there is a T>~I such that 
Her~fll L4(;,) ~< Ilfll L'r But (cf. p. 181 in Ref. 12) lie TM I1L'(~_)-. L4(~.) = 1 implies 
(5.1') with ? =4T. I 

The point of this section is that we will not require that 
{7(A): A c c Z  v) be bounded as we did in the previous section, but only 
that 7(A) not grow too rapidly as A ~ Z  v. To compensate for this 
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relaxation of the logarithmic Sobolev hypothesis, we need the following 
mixing conditions. 

Mixing condition. There is a 6 > 0 such that for all finite An and a l l f  
that are bounded and ~EA0 measurable, there is a constant A~,f such that 
for all r/e E and all A ~ A o 

f f(r GA,,(d~)-f f(~) g(d~) ~ < A , , f e x p [ - 6  dist(Ao, A<)] (5.2) 

where g is the unique [because of (5.2)] element in N ( J ) .  
Given A c c  Z v and r /eE,  let {P~ ' " : t>0 }  denote the Markov 

semigroup on C(E) such that 

pA.,f __ f = f] pA.,LA.,f ds. t>~0 

where 

1 
k ~'~TA divk[gA(~A I r/A<) Vs< f ] ~  r I q~<) 

gA(~A I~A<) 

for f ~ ( E ) .  It is an easy matter to check that GA, ~ is {PA'" : t>0}-  
reversible. 

If M were a finite set, the proof of the next lemma could be found in 
Ref. 7. The changes needed in that proof to cover the present situation are 
purely notational. In particular, if one replaces A~c there by Vk, the proof 
goes through nearly word for word. 

L e m m a  5 .2 .  There is a constant c <  oe such that for all finite A o 
and all f ~  CAo(EAo ) there is a constant A2. i such that for all r/e E 

A _c, ( c t )  N+2 
IP,S(~t)-P,A'"fO#)I ~ zs~ (N+2)!  

where N--  [dist(Ac, A<)/R]. 

T h e o r e m  5.3. Assume that the above mixing condition holds for 
some 6 > 0 .  In addition, assume that there are ~ ( 0 ,  or), aE [0, 1/v), and 

c [0, oe) such that 

7(A) ~<7 ]AI ~ (log IAI) ~ (5.3) 
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for all cubes A ~ c Z ~. Then there is an e > 0 such that for all initial dis- 
tributions #o and ~b e @(E) 

tl_~v ] 
f~(~)g(d~)-;(~(~)#t(d~) ~<B(~b)exp - e  (log t)~j, t>~2 (5.4) 

where B(~b) ~ (0, oe ). 

Proof. Let ~b e C~o(E). If Ao has side length l, let A(t) be the cube 
with side length l+ 8cRt and having the same center as Ao. Here c is as in 
Lemma 5.2. Then 

P,~(tl)- f (}(~) g(d~) <~ IP,~01)- 

+ pA(,).,q)(q)_ .f ~(~) GA,,(d{) 

+ f O(~)GA,.(d~)-f 0(~)g(d*) t (5.5) 

The first term on the right side of (4.9) is hounded by 

4.,+2 [ ( 4 ) ]  A _ct ( c l )  -<Q A 4 A o-c t /2  2'~e (4ct + 2)! "~ 2,0b e ~< 2,~b ~. 

By the above mixing condition the third term on the right side of (5.5) is 
bounded by A~,+e 46~,.,. Thus, we need only bound the second term. To do 
that we return to the free energy considerations of the previous section. 
First, note that if 

then F,(a)=O=F;(O) and F~'(a)~<4 I1~11~ for all a. Thus, for all a>~0, 
F,(a)~2 I[~11~ a 2, and by (3.19) 

- f r aA(,),.(d~) 
p A(,),.~(q) 

~< 2 5/2 I1~11 ~ f~(')(~) log fA(t)(~) GA,).,(d~) (5.6) 

where f ] ( , l ( . )  = d#AO)(.)/dGA(,),,(.) and #~(')= (P,~"),")* 3,( ').  Now, by 
(4.3) we have 

f fAm(~) log f]( ')(~) G~(,),,(dr <~ C IA(t)l (5.7) 
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Also, by a straightforward computation (see Ref. 9) and Lemma 4.1 

d f f~(,)(~) log f~(')(~) GA(t),.(d~) ds 

f fA(O(~) LA(t~,~ A(t) = 1ogfs (4) GA(,),.(d~) 

<~ 7 ( ~ t ) ) f  fA(~)(~)logfA(O(~)GA(,),~(d~) (5.8) 

Thus, 

f fA(t)(~) log f~(t)(~) GA(,)..(d~) 

<<. C IA(t)l e x p [ - 4 ( t -  1)/7(A(t)) ] 

<~ C(I + 8cRt) ~ exp{ - 4 ( t -  1)/?(l+ 8cRt) ~ [ log( l+  8cRt)~] + } 

~< Bo e x p [ - e t  ~ - ~ t) +] (5.9) 

for some B0 < oo that depends on ~b only through l, and some e > 0 that 
does not depend on / ,  and all t 7> 2. | 

6. ONE D I M E N S I O N  

In this section we show that, in one dimension, the hypotheses of 
Theorem 5.3, with ~ = 0 and z = 1, are satisfied for all finite-range, trans- 
lation-invariant potentials J .  

The first hypothesis is (5.2). That this holds for Gibbs states with 
finite-range interaction in one dimension is well known. It can be proved 
by considering intervals whose length is the length of the interaction and 
noting that the conditional Gibbs state GA,,(') is just a Markov chain con- 
ditioned to have specific values at both ends of an interval of length [A[/L 
Moreover, the state space of this Markov chain is compact and the trans- 
lation function is uniformly positive. (See the discussion of one-dimensional 
systems in Ref. 11 for the basic ideas.) 

It is considerably more work to check that 7(A)~<7 log [A[ for some 
< oe. We begin with the following lemma. 

k e m m a  6.1. Let Ao= [-R/2 ,  R/2]. There is a constant 71 such 
that if A is any interval containing Ao and t /eE,  then for a l l f e  CAo(E) 

ff2(~) 1ogf2(~) GA,q(d~)~<,y I Z f IlVkf( ~)t12 GA,,,(d~) 
keAo 

+ f f2(~) GA.,(d~)log f f2(~) GA.,(d~) (6.1) 
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Proof. Note that for any A ~ A o and any r/s E the marginal dis- 
tribution of G~,, o n  m A~ has a density with respect to 2 A~ that is bounded 
away from infinity and zero uniformly in A and r/. The rest of the proof is 
just a in Lemma 5.1. | 

Our next step is to prove that there is some number e > 0 such that for 
all A and all ~/, L A'n acting o n  LZ(GAm(')) has a gap of length at least s 
between 0 and the rest of its spectrum. We do this by first introducing a 
jump process for which this result has already been proved. 

For  f c  ~ ( E )  let 

Qf(rl) = ~ fM I f ~  ~{ki(a ] q{k}c) -- f ( q ) ]  Gikl'"(da) 

s generates a positive contraction semigroup (S , : t  >~ 0) on C(E) and t'2 is 
self-adjoint on L2(g). (5) Moreover, (5'8) 

f f(q) s g(drl) 
1 _ ~ f ~  )2 
2~j~JM[foq~tk}(O,~t,}c)--f(~)]G{k},~(da)) g(d,) (6.2) 

The following lemma can be proved by merely changing the notation in the 
proof of Theorem 0.4 of Ref. 6. 

[ . e mm a  6.2. There is an e o > 0  such that for a l l f ~ L : ( g ) ,  

-ff(~)g2f(~)g(d~)>~eoflf(~)-ff(~l)g(d~l)]2g(d~) (6.3) 

[ . e mm a  6.3. There is an e~>0  such that i f f e C ~ ( E )  for some 
finite A, then 

f ,iv f(r g(d~)/> s 1 flf(r (6.4) 

Proof. To simplify the notation, we make the following convention. 
For k e Z ~, r/~ E, and co ~ M we write r/kco for the element of E that is equal 
to r/ at all sites except k and is equal to co at k. Thus, instead of writing 
f o  g~(co [r/{k}~) we write simply f(qkco). 

Now, by (6.2) and (6.3) 
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B u t  

=;IMff(rlk~)--fMf(tlka)G{k}.n(da)12G,~k},,r(do))g(dtl) 

x max g{k~(co I r/~k~,)/Z~k~(t/~k~') (6.6) 
e.O, r/ 

Now the Laplace-Beltrami operator on the compact manifold M has a gap 
at 0 in its spectrum (cf. the proof of Lemma 5.1). Thus, there is an e2 > 0 
such that 

1 L ~< - --  f(~/ka) divkV~ fO/ko-) 2(da) 
/3 2 

1 ( .  

-- ~-~ JM IIVk f(r/*a)ll2 ,~(do-) 

S u b s t i t u t i n g  this into the right side of (6.6) and using translation 
invariance, we have 

1 g~}(o) I ~kl,)  max Z{k/(~lkl~) ~< - -  max 
~2 ~,~ Z(k~(~lkl c) o~,~ g~k/(O~l~{,~,.) 

x ff , IlVk f(~/krr)ll 2 G{k},~(da) g(d, r) (6.7) 

The temma follows from (6.5) and (6.7). | 

k e m m a  6.4. There is an e > 0 such that for all intervals A, all r/e E, 
and a l l f e  C~(E), 

f IlVk f(~r)ll 2 GA,.(da) 
k ~ A  ' 

822/ '46/5-6-26 
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ProoL Note that since [OA] is independent of A in one dimension, 
there is a constant ~ > 0  such that for all r/ and all A ENA, 
1/~>~ GA,,(A)/g(A)>~ ~. Thus, the left side of (6.8) is bounded below by 

~ f IlVkf(o-)il 2 g(&r) 
k~A 

(6.9) 

1 ([ ,1 ,2+ RI) 
1 

(6.10) 

ProoL First note that if A is an interval, then "f(A) depends only on 
]A]. Therefore we write 7(/) instead of 7(A) when A is an interval contain- 
ing I integers. 

Now let AI [ - l l  • = - 2  , - � 8 9  A 2= [- �89  �89 and 
A 3 =  [-�89 �89 and set A = A l w A 2 w A  3. If f f E M  A and ogiem A', 
we write a = co~e)2co 3 to mean ~r(k)= coi(k ) if k e A t. If o 2 ~ M  A2 and r/e E, 
we will let r/c% denote the configuration that is equal to r/ off of A2 and 
equal to co 2 on A 2. We denote the conditional distribution of g given 
~Ac,~A2 by G~o2(') and note that since ]Aa] = R, G~2= GA,,,~2 x GA3,,o~2. If 
A ~NA2, we denote GA,,(A ) by g(AA2)(A I r/). 

Let f E C2.  By conditioning on ~A2, we have 

f fz (a)  log f2(o-) GA,,(da) 

= f f  f2((Dl(OZO)3) log f2(O)l (.02(D3) Gqw2(d(Ol d(D3) g(AA2)(dc02 It/) 

(6.11) 

where ~ m-~- ~2~ 1 . m 

I . emma  6.5. Let g be a one-dimensional Gibbs state whose range 
of interaction is R and let ?(A) be as in Section 5. Then there is a constant 
ko < oo such that for all 11, 12 ~> 1 
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Thus, by first factoring G,~,2(" ) and then applying Lemma 9.13 in Ref. 12, 
we bound the right side of (6.11) above by 

f {  [7(l,) v ~'(12)] ~ ff IIVk f(col~02c03)ll 2 GAl,noo2(d(-Ol) GA3,,Tco2(doJ3) 
k EAI~A3  

+ fz(t/~o2)log F2(qo2)} g~AA~(d~2t q) (6.12) 

where 

F2(r/~2) = ff  f2(~1 c02~3) G,11,,o~2(dc~1) GA3,no~2(dc03) 

By applying Lemma 6.1 to the part of (6.12) that involves F z, we may 
bound (6.12) above by 

[~(l~) v ~(I2)3 ~ f IlVkf(G)ll 2 GA,,(d'Y) 
k ~ A l ~ A 3  

+ ~, ~ f [[Vkr(r/~ 2 gCAA2)(dc02) 
k~A2 

(6.13) 

Denote dGno~z/d)v AIwA3 by o~.~o2 and concentrate on the second term in 
(6.13). For any kEA 2 

IIV,~F(r/o~2)[I 2 

= J'j" 2f(~1(-02~3) Vkf(C01C02C03) G~o,2(do21 doJ3) 
2F(t/co2) 

SY f2(COl (D2(J)3) Vk gt/022( (ol ('03) /~AI u A3(dr I do)3 ) 2 

-~ 2F(qo92) 

<~ 2f f  [[Vkf(~ol~2c~3)[I 2 Gu~o2(dco, dco3) 

+21 ~ f2(e) l ('02 (-O3) Vk gr/o)2(fD 1F(qco2)(~ ) 2A1 ~ A3(dfD1 de)3) 2 (6.14) 

Now 

f iVk ~2(do~1 d(.o3) • AI ~ A3(dc01 do)3) = V k 1 = 0 
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Thus, for any number W, 

ff f2(cOlCO2~3) Vk gr/co2((D1 (D3)~AlwA3(d(D1 do33) '2 

w] ~ V~ ~(~o~ co~) 
-- f f  [f( olco2c 3)- ~rtco2((Dl(D3) grtco2((-010)3) 2A'~A3(dol do3) 

+ 2wff [f(fD1 (D2033)-- W] vk  g~~ C03) 2 gr/o2(O) 1 (D3) gr/~~ t (D 3 ) 2A'wA3(do)ldO~3) 

~< 2 IlVk log ~.,~2(~01-3)11L ff I - f ( ~ 1 0 ~ 3 )  - w ]  ~ 6 . ~ ( d ~ ,  de03) 

+ 4W 2 ff ][Vk log ~o2(~ot~o3)1t 2 (7,o)2(dcol do)3) 

X ff [f(c01r W] 2 6~o2(dCOl dco3) (6.15) 

Setting 

W =  f f  f((.01092(.03) 6~(dCOl dco3) 

and noting that IlVklOg gno)2(r is bounded uniformly in all of its 
variables, we see that the second term on the right side of (6.14) is bounded 
by 

K 1 m 2 j j" [f(colco2co3)- W] 2 G.~o2(dco, dco3) 

for some finite constant K1, which is independent of ll, 12, t/, and k. Since 
W 2 ~<F2(r/co2), upon substituting this into (6.14) and then substituting the 
resulting inequality into (6.13), we have 

f f2(a) log f2(a) GA,~(da) 

AC~I 2 
kcA2 

+k, Y~ 
k~A2 

f ]lVk f(a)ll2 GA,.(da) 
k~AI~AA3 

f IlVk f(~)li 2 GA,~(d~) 

fff[f(colco2(~3)- W] 2 (~r/co2(dfnl d(~3) g]A2)(dc02]q) 

(6.16) 
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Since (7,~ 2 = GAl,rtco2 • Gm,~,v we apply Lemma 6.3 to the tensor product 
L2(GA,,,o~) | L2(G~3,,o,~) to conclude that the last term on the right side of 
(6.16) is bounded by 

K 1 -  ~ ~ [IVjf(co,o92co3)ll  2 Grlo92(d(.Ol d(D3) gA2(d(-02) 
~l k~A2 jEAI~A3 

= K1 JA2[ e -~ ~ f IIV~/(~ GA,,(da) 
jEAI~A3 

Thus the lemma is proved with k o = 7 ,  v [KIRe11]. | 

T h e o r e m  6.6. Let g be a one-dimensional Gibbs state with finite- 
range potential, and let 7([A[) be as in Section 5. Then there is a constant 7 
such that 7(A)~<vlog [A[ for all [A[ >~2. 

ProoL By induction on i it is easily seen from Lemma 6.5 that if 
( U -  1) R < r n  ~< (2 ~+~- l) R, then 

7(m) <<, ~ + iko (6.17) 

where ]=maxl~<;~R~/(i). Also, if ( U - 1 ) R < m < ~ ( U + I - 1 ) R ,  then 
log R + ( i -  I ) log 2 ~< log m. Thus, 

2i-~o~ 7(m) <~ ,,!i---~ ~ + ik~ k~ 
~ ~ l o g R + ( i - 1 ) l o g 2  log2 

and hence there is a constant ? < oo such that 

7(m)~<71ogm fora l l  m>~2 | 
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